Meet Inspiring Speakers and Experts at our 3000+ Global Conference Series Events with over 1000+ Conferences, 1000+ Symposiums
and 1000+ Workshops on Medical, Pharma, Engineering, Science, Technology and Business.

Explore and learn more about Conference Series : World's leading Event Organizer

Back

3rd World Congress on GIS and Remote Sensing

Charlotte, USA

Nataliya A Rybnikova

Nataliya A Rybnikova

University of Haifa, Israel

Title: Identifying geographic location of research and educational activities using spectral properties of light emitted during nighttime

Biography

Biography: Nataliya A Rybnikova

Abstract

Statement of the Problem: Educational and research activities (R&EAs) are major forces behind modern economic growth. However data on geographic location of such activities are poorly reported, which complicates a comparative analysis of their patterns and forces behind their geographic concentrations. The purpose of this study is to check the hypothesis, whether intensities and spectral properties of artificial light-at-night (ALAN) could be used for effective identification of different economic activities on the ground, due to the unique light "signature" of each economic activity. Methodology & Theoretical Orientation: In order to develop activity identification models, in situ measurements of ALAN intensities and spectral properties were carried out at the locations of different economic activities in the Greater Haifa Metropolitan Area. For this task we used an illuminance spectrophotometer CL-500A portable device, measuring the total and spectral irradiance of ALAN, incremented by a 1-ηm pitch, from 360 to 780 ηm. The total number of measurements was 610, including 148 measurements, carried out near four research institutions, located in the City of Haifa. Findings: As our analysis shows, ALAN intensities, emitted by different economic activities at peak wavelengths, help with their identification. In particular, logistic regressions, incorporating ALAN intensities at the peak or near-peak wavelengths, and geographical attributes of the sites as controls, succeeded to predict correctly 98.6% of the actual locations of existing R&EAs. A multispectral image of the Haifa bay area, obtained from the Astronaut Photography Database, was used for the model's validation. Conclusion & Significance: The current study is apparently the first one which uses ALAN spectral properties to identify on-ground economic activities, using R&EAs as a test case, and the proposed approach may be used in future studies for the identification of various on-ground EAs, access to which is restricted or information unavailable, by using remote sensing tools.